Главная » В курсе » Как работает Закон больших чисел – Примеры в реальной жизни

Как работает Закон больших чисел – Примеры в реальной жизни

Примеры работы закона больших чисел в разных областях и отраслях. Чем отличаются ЗБЧ от Чебышева и Бернулли и как их применять в своей жизни.

Закон больших чисел

Этот термин пришел из теории вероятности, закон больших чисел показывает насколько близким окажется среднее значение выборки к математическому ожиданию для одного и того же распределения.

Звучит несколько непонятно, ниже подробнее остановимся на физическом смысле этого закона и методах его применения в разных сферах человеческой деятельности.

Этот закон применяется и в инвестировании, и в здравоохранении, и в сфере страхования – везде, где нужно анализировать массив информации.

Что такое закон больших чисел

Для начала разберемся с терминами:

  • Математическое ожидание – под ним понимается усредненное значение случайной величины. Например, при броске костей (1 кубика) при каждом броске вероятность выпадения цифры от 1 до 6 равна. Матожидание же рассчитывается как среднее значение выпавшего результата на определенной выборке, его величина зависит от выбранной выборки;
  • Случайная величина – любое событие, итог которого невозможно спрогнозировать со 100%-ной точностью. Простейший пример – подбрасывание монетки (экспериментатор не знает какая сторона монеты выпадет в каждом конкретном случае).

Закон больших чисел простыми словами – это закон, позволяющий понять, каким вероятнее всего окажется результат эксперимента, если проводить его неоднократно. Чем большим будет число таких экспериментов, тем ближе будет результат к математическому ожиданию.

Более того, закон больших чисел – это та закономерность, которая позволяет прогнозировать исход случайных событий на длинной дистанции. Это важно в прогнозировании и оценке рисков в любой сфере деятельности человека.

Если заинтересуетесь доказательствами этого, рекомендуем углубиться в теорию вероятности. Так, доказательство закона больших чисел Чебышева показывает, что среднее арифметическое при приближении числа экспериментов к бесконечности практически уравнивается с матожиданием.

Схожее доказательство есть для закона больших чисел Бернулли. В нем доказывается, что при неограниченно большом количестве экспериментов частота проявления определенного события оказывается равной вероятности его появления.

Помимо обычного есть и усиленный закон больших чисел. В обычном матожидание может бесконечное количество раз сильно отличаться от среднего значения результата экспериментов (происходит это бесконечно редко). В усиленном же законе вероятность такого отличие сведена к нулю, то есть со 100%-ной вероятностью матожидание сводится к арифметическому среднему.

Сущность закона больших чисел

Для визуализации закона представьте себе подбрасывание монетки. Вероятность выпадения одной из сторон 50%, если подбросить ее 10 раз, то распределение может оказаться и 70/30 и 20/80.

Но если продолжать эксперимент 10000, 1000000 раз, то распределение будет приближаться к 50/50. То есть частота проявления каждого события на дистанции стремится к вероятности его появления.

подбрасывание монетки

Еще один пример – подбрасывание кубиков (вернее одного кубика). В каждом эксперименте может выпасть число от 1 до 6, но закон больших чисел утверждает, что на длинной дистанции среднее арифметическое суммы бросков приближается к 3,5. Результаты эксперимента доказывают это на практике.

подбрасывание кубиков

Похожую закономерность можно найти, например, при исследовании результатов общения страховых агентов с потенциальными клиентами. При большой выборке окажется, что в среднем на 1000 звонков приходится определенное количество заключенных договоров. Так что важно понимать суть закона больших чисел, он работает в любой сфере.

Без использования этого закона было бы невозможно планировать развитие бизнеса и оценивать эффективность работы в прошлом.

Как использовать закон больших чисел инвестору

Зная, что понимается под законом больших чисел инвестор может прогнозировать результаты вложений.

Работа со статистикой в этом и заключается, инвестиционная стратегия проверяется на истории, рассчитывается математическое ожидание, коэффициент Шарпа, Сортино и прочие характеристики.

Если для исследования взять достаточно продолжительный временной отрезок, то в будущем при использовании этой инвестиционной стратегии результат вероятнее всего окажется близок к полученному на истории.

Простейший пример оценки стстратегии:

  • Известно, что при бросках игрального кубика математическое ожидание выпавших чисел стремится к 3,5;
  • Представьте, что при каждом броске игрок получает вознаграждение, равное выпавшему числу. То есть от $1 до $6;
  • Плата за бросок составляет $3, при этом количество бросков не ограничено.

Ответьте на вопрос – стоит ли работать при таких условиях?

Так как по количеству бросков ограничения нет, то на дистанции в среднем заработок составит $0,5 на одном броске. Стратегия однозначно выигрышная и ее стоит использовать. Это простейший пример закона больших чисел, примененного для оценки эффективности инвестиций.

Например, алгоритмические хедж-фонды работают с сотнями/тысячами стратегий, нацеленных на сотни различных инструментов. Обязательное требование для включения стратегии в пул – положительное математическое ожидание. При работе с инструментами с с максимальной отрицательной корреляции, это делает работу практически безубыточной.

Рядовой инвестор также использует понятие о законе больших чисел (даже если не владеет терминологией из теории вероятности). Вспомните как проводится анализ любого инвестиционного портфеля:

  • Подбирается его состав;
  • Он тестируется на истории;
  • Если на дистанции математическое ожидание положительное, портфель берется в работу.

Эта схема – типичное использование закона больших чисел, ей следуют все опытные инвесторы.

Разберем этот метод на примере инвестиций в ETF с тикером SPY.

Для тестирования выберем любой временной промежуток, например, 2010-2016 гг.. В отчете нас интересует математическое ожидание или средний арифметический прирост капитала в год и в месяц.

Есть еще и средний геометрический прирост, он рассчитывается на основании наклона кривой роста депозита, при стабильном росте капитала средний арифметический и геометрический прирост практически совпадают.

Пример 1

Теперь проведем форвард-тест (взяв участок истории после 2016 г.). Если кратко, то по закону больших чисел в будущем должны получить примерно тот же результат.

Пример 2

Ожидания оправдались – рассчитывали на среднюю месячную и годовую доходность на уровне 1,07% и 13,62%, а при форвард-тесте получили 1,20% и 15,42%. Расхождение составило 12,2% и 13,2%, что для не особенно длинной дистанции неплохой результат.

Закон больших чисел просто показывает каким вероятнее всего будет результат случайного события. Но он не гарантирует, что в каждом следующем испытании итог будет строго равен математическому ожиданию.

За период с февраля 1993 г. по конец 2000 г. SPY показал себя отлично. Опираясь на статистику, инвестор мог рассчитывать на средний профит в 17,98% в год или 1,39% в месяц.

Пример 3

Но после 2000 г. начался спад и фонд просел, инвестор получил убыток. На короткой дистанции могло показаться, что закон перестал работать и пора искать новый инструмент для вложений.

В следующие пару лет ETF SPY был убыточным. Вместо роста капитала инвестор получил убыток в среднем 15,19% в год или 1,36% в месяц. Расхождение с ожиданиями порядка 180-200%, на погрешность это списать нельзя.

Пример 4

Причина таких расхождений – работа с небольшими временными промежутками. Здесь уместна аналогия с подбрасыванием монетки:

  • Если подбрасывать ее 1 млн. раз, то распределение выпадения аверса и реверса составит почти 50/50;
  • Но если из этого миллиона подбрасываний исследовать выборку, например, в 10-20 экспериментов, то распределение может оказаться любым – и 10/0, и 60/40, и 30/70.

То же и в инвестировании. Вспомните сущность закона больших чисел, он применим только при достаточном массиве статистики.

Если вернуться к ETF SPY и оценить его показатели за все время существования, то окажется, что рассчитывать можно в среднем на рост в 10,83% за год и 0,86% в месяц.

Пример 5

Этим результатам стоит доверять больше еще и потому, что за выбранный период SPY успел пережить 2 кризиса.

Ровно по такой же схеме закон больших чисел используется и в хедж-фондах, управляющих миллиардами долларов. Отличаются лишь инструменты анализа информации, сам принцип остается тем же.

Как использовать закон больших чисел в бизнесе

Закон больших чисел связан с обработкой статистических данных. Крупный бизнес не сможет работать и прогнозировать развитие без обработки статистики, поэтому этот закон в бизнесе применяется повсеместно.

Ниже – варианты применения закона в различных секторах:

  • Прогнозирование объемов продаж продукта, например, смартфонов, автомобилей, холодильников. Помимо емкости рынка и степени его насыщения в качестве базы для прогноза берутся и результаты прошлых отчетных периодов;
  • Страхование – помогает рассчитать страховую премию. На дистанции даже несчастные случаи подчиняются закону;
  • Банковская деятельность – помогает рассчитать ставку по кредиту с тем, чтобы покрыть убытки, возникающие из-за клиентов, не выплачивающих займ, и остаться в плюсе;
  • Даже при установке нормы «холодных звонков» используется закон больших чисел, в статистике он помогает рассчитать средний процент успешных звонков. На основе этого рассчитывается норма для каждого менеджера;
  • Медицина – статистика позволяет выявить среднюю заболеваемость по месяцам и в зависимости от этого выработать нормы снабжения медучреждений.

Закон больших чисел в бизнесе применяется повсеместно. Прогнозирование результатов в будущем – не единственное его применение.

Так, закон больших чисел описывает фазы развития бизнеса. В частности, из него следует, что темпы роста бизнеса в процентном соотношении не могут сохраняться постоянными неограниченно долго.

Жизненный цикл бизнеса

Отсюда следует, что у молодого бизнеса более вероятен резкий рост, чем у компаний с многомиллиардными оборотами. Это следует взять на вооружение инвесторам.

По мере роста происходит насыщение рынка, рост в процентном соотношении падает (при этом в деньгах показатели растут). Чтобы не перейти к стагнации компания выводит новые продукты, выходит на новые рынки.

Применение закона больших чисел в банковской деятельности

Закон больших чисел просто необходим в банковской сфере.

Для обоснования частичного банковского резервирования. Для банка нет смысла постоянно располагать 100% депонированных средств. Если клиенты, например, совокупно внесли на счет $10 млрд., то банк часть этой суммы держит наготове на тот случай, если клиенты захотят обналичить средства, а часть пускает в оборот, зарабатывая фактически на пустом месте. Закон больших чисел позволяет рассчитать долю средств, которые можно пустить в оборот. Для нормальных условий рассчитывается процент клиентов, которые могут одновременно затребовать возврат денег, исходя из этого определяется норма резервирования.

В кредитовании. Например, чтобы обосновать проценты по кредиту. Использовав закон больших чисел банк может спрогнозировать какая доля заемщиков не выплатит займ. В том числе исходя из этого назначается процент за использование кредитных денег.

Для составления профиля благонадежного и неблагонадежного заемщика. На основании этого закона составляется профиль заемщика, который с наибольшей вероятностью вернет займ. Учитываются все составляющие – пол, сфера работы и должность, трудовой стаж, средний месячный доход, назначение займа, кредитная история, семейное положение.

Что касается того, на чем основывается закон больших чисел при его применении в банковской сфере, то это тот же массив статистики.

Закон чисел для расчета

Эта закономерность используется и другими околофинансовыми учреждениями. Например, БКИ при расчете кредитного рейтинга и прогнозе о возможности займа в банке опираются на анализ статистики. Значит закон больших чисел задействован и здесь.

Как работает закон больших чисел в страховании

Сектор страхования предлагает всем желающим (не только физлицам) защитить себя от убытков при наступлении несчастного случая.

На первый взгляд форс-мажоры спрогнозировать невозможно, но при изучении статистики оказывается, что и они подчиняются математическим закономерностям.

Закон больших чисел в страховании используется для определения минимального страхового взноса, который бы позволил компании перекрыть убытки при наступлении страхового случая.

Закон больших чисел в страховании

Пример

Компания страхует 100 000 автомобилей, усредненная стоимость каждого $50 000, столько страховщик обязан выплатить при наступлении страхового случая.

Закон больших чисел говорит о том, что в среднем за год вероятность попадания в ДТП/угона (условия наступления страхового случая оговариваются отдельно) составляет 1/200 или 0,5%. То есть ежегодно страховщику придется выплачивать компенсацию 0,5 х 100000/100 = 500 автовладельцам.

При выплате в $50 000 ежегодно компания будет выплачивать 500 х $50 000 = $25 млн.

Теперь рассчитаем стоимость страховки для страхователей. Чтобы страховщик вышел в ноль каждый из страхователей должен заплатить $25 000 000/100 000 = $250. Но так как страховщик хочет заработать, то в реальности стоимость страховки будет равна $250 + N, где N – вознаграждение компании, зависящее в первую очередь от конкуренции.

Страхование – бизнес, который стал возможным исключительно благодаря закону больших чисел. Без прогнозирования соотношения прибыли и убытка по страховым случаям страховщики не стали бы работать.

Когда закон больших чисел не работает

Сложно найти сферу деятельности человека, где не применяется закон больших чисел. Но сама по себе эта закономерность не является 100%-ной гарантией того, что в будущем события будут развиваться в соответствии с расчетами.

Закон больших чисел может не работать при:

  • Неумении вести бизнес. Например, неверно рассчитанная премия страховщика, игнорирование факторов риска может привести к банкротству страховой компании.
  • Неверно выбранной базе данных для анализа. Расчеты дадут ложные результаты.
  • Неверной оценке аудитории, на которую нацелен продукт. Представьте, что каждый житель китайского Уханя застраховал свое здоровье на случай эпидемии. В теории это выгодная сделка – вероятность эпидемии низка. Но если она все же случится, страховщик разорится. В этом примере нужно исходить из того, что каждый город = 1 потребитель.
  • Закон больших чисел не гарантирует, что в каждом конкретном случае результат окажется равен матожиданию. Например, в 2008-2009 гг. инвестор столкнулся бы с проявлением нарушения этого закона.

Пример 6

Это не значит, что закон больших чисел нельзя использовать в бизнесе и инвестировании. Просто нужно заранее понимать, что он лишь прогнозирует вероятный результат в будущем на основе статистики.

Заключение

Если дать определение закону больших чисел простым языком, его можно назвать законом, описывающим наиболее вероятный сценарий развития событий в будущем, опираясь на массив исторических данных. При этом он не гарантирует на 100%, что результаты окажутся точно такими же.

Эту закономерность использует любой бизнес без исключения, в инвестировании ей также отведена существенная роль.

Вероятнее всего вы и сами неосознанно пользуетесь этой закономерностью при планировании своих инвестиций. Если же нет – самое время начать это делать.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Максим Галански
Автор: Максим Галански

"Финансовые рынки объединяют разные интересы, бизнес, континенты. Это то место, где всегда можно найти, чем заняться, что и как сделать или создать."

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам:

Спасибо за помощь, мы очень Вам благодарны!