Примеры работы закона больших чисел в разных областях и отраслях. Чем отличаются ЗБЧ от Чебышева и Бернулли и как их применять в своей жизни.
Этот термин пришел из теории вероятности, закон больших чисел показывает насколько близким окажется среднее значение выборки к математическому ожиданию для одного и того же распределения.
Звучит несколько непонятно, ниже подробнее остановимся на физическом смысле этого закона и методах его применения в разных сферах человеческой деятельности.
Этот закон применяется и в инвестировании, и в здравоохранении, и в сфере страхования – везде, где нужно анализировать массив информации.
Краткий гид:
Что такое закон больших чисел
Для начала разберемся с терминами:
- Математическое ожидание – под ним понимается усредненное значение случайной величины. Например, при броске костей (1 кубика) при каждом броске вероятность выпадения цифры от 1 до 6 равна. Матожидание же рассчитывается как среднее значение выпавшего результата на определенной выборке, его величина зависит от выбранной выборки;
- Случайная величина – любое событие, итог которого невозможно спрогнозировать со 100%-ной точностью. Простейший пример – подбрасывание монетки (экспериментатор не знает какая сторона монеты выпадет в каждом конкретном случае).
Закон больших чисел простыми словами – это закон, позволяющий понять, каким вероятнее всего окажется результат эксперимента, если проводить его неоднократно. Чем большим будет число таких экспериментов, тем ближе будет результат к математическому ожиданию.
Более того, закон больших чисел – это та закономерность, которая позволяет прогнозировать исход случайных событий на длинной дистанции. Это важно в прогнозировании и оценке рисков в любой сфере деятельности человека.
Если заинтересуетесь доказательствами этого, рекомендуем углубиться в теорию вероятности. Так, доказательство закона больших чисел Чебышева показывает, что среднее арифметическое при приближении числа экспериментов к бесконечности практически уравнивается с матожиданием.
Схожее доказательство есть для закона больших чисел Бернулли. В нем доказывается, что при неограниченно большом количестве экспериментов частота проявления определенного события оказывается равной вероятности его появления.
Помимо обычного есть и усиленный закон больших чисел. В обычном матожидание может бесконечное количество раз сильно отличаться от среднего значения результата экспериментов (происходит это бесконечно редко). В усиленном же законе вероятность такого отличие сведена к нулю, то есть со 100%-ной вероятностью матожидание сводится к арифметическому среднему.
Сущность закона больших чисел
Для визуализации закона представьте себе подбрасывание монетки. Вероятность выпадения одной из сторон 50%, если подбросить ее 10 раз, то распределение может оказаться и 70/30 и 20/80.
Но если продолжать эксперимент 10000, 1000000 раз, то распределение будет приближаться к 50/50. То есть частота проявления каждого события на дистанции стремится к вероятности его появления.
Еще один пример – подбрасывание кубиков (вернее одного кубика). В каждом эксперименте может выпасть число от 1 до 6, но закон больших чисел утверждает, что на длинной дистанции среднее арифметическое суммы бросков приближается к 3,5. Результаты эксперимента доказывают это на практике.
Похожую закономерность можно найти, например, при исследовании результатов общения страховых агентов с потенциальными клиентами. При большой выборке окажется, что в среднем на 1000 звонков приходится определенное количество заключенных договоров. Так что важно понимать суть закона больших чисел, он работает в любой сфере.
Без использования этого закона было бы невозможно планировать развитие бизнеса и оценивать эффективность работы в прошлом.
Как использовать закон больших чисел инвестору
Зная, что понимается под законом больших чисел инвестор может прогнозировать результаты вложений.
Работа со статистикой в этом и заключается, инвестиционная стратегия проверяется на истории, рассчитывается математическое ожидание, коэффициент Шарпа, Сортино и прочие характеристики.
Если для исследования взять достаточно продолжительный временной отрезок, то в будущем при использовании этой инвестиционной стратегии результат вероятнее всего окажется близок к полученному на истории.
Простейший пример оценки стратегии:
- Известно, что при бросках игрального кубика математическое ожидание выпавших чисел стремится к 3,5;
- Представьте, что при каждом броске игрок получает вознаграждение, равное выпавшему числу. То есть от $1 до $6;
- Плата за бросок составляет $3, при этом количество бросков не ограничено.
Ответьте на вопрос – стоит ли работать при таких условиях?
Так как по количеству бросков ограничения нет, то на дистанции в среднем заработок составит $0,5 на одном броске. Стратегия однозначно выигрышная и ее стоит использовать. Это простейший пример закона больших чисел, примененного для оценки эффективности инвестиций.
Например, алгоритмические хедж-фонды работают с сотнями/тысячами стратегий, нацеленных на сотни различных инструментов. Обязательное требование для включения стратегии в пул – положительное математическое ожидание. При работе с инструментами с с максимальной отрицательной корреляции, это делает работу практически безубыточной.
Рядовой инвестор также использует понятие о законе больших чисел (даже если не владеет терминологией из теории вероятности). Вспомните как проводится анализ любого инвестиционного портфеля:
- Подбирается его состав;
- Он тестируется на истории;
- Если на дистанции математическое ожидание положительное, портфель берется в работу.
Эта схема – типичное использование закона больших чисел, ей следуют все опытные инвесторы.
Разберем этот метод на примере инвестиций в ETF с тикером SPY.
Для тестирования выберем любой временной промежуток, например, 2010-2016 гг.. В отчете нас интересует математическое ожидание или средний арифметический прирост капитала в год и в месяц.
Есть еще и средний геометрический прирост, он рассчитывается на основании наклона кривой роста депозита, при стабильном росте капитала средний арифметический и геометрический прирост практически совпадают.
Теперь проведем форвард-тест (взяв участок истории после 2016 г.). Если кратко, то по закону больших чисел в будущем должны получить примерно тот же результат.
Ожидания оправдались – рассчитывали на среднюю месячную и годовую доходность на уровне 1,07% и 13,62%, а при форвард-тесте получили 1,20% и 15,42%. Расхождение составило 12,2% и 13,2%, что для не особенно длинной дистанции неплохой результат.
Закон больших чисел просто показывает каким вероятнее всего будет результат случайного события. Но он не гарантирует, что в каждом следующем испытании итог будет строго равен математическому ожиданию.
За период с февраля 1993 г. по конец 2000 г. SPY показал себя отлично. Опираясь на статистику, инвестор мог рассчитывать на средний профит в 17,98% в год или 1,39% в месяц.
Но после 2000 г. начался спад и фонд просел, инвестор получил убыток. На короткой дистанции могло показаться, что закон перестал работать и пора искать новый инструмент для вложений.
В следующие пару лет ETF SPY был убыточным. Вместо роста капитала инвестор получил убыток в среднем 15,19% в год или 1,36% в месяц. Расхождение с ожиданиями порядка 180-200%, на погрешность это списать нельзя.
Причина таких расхождений – работа с небольшими временными промежутками. Здесь уместна аналогия с подбрасыванием монетки:
- Если подбрасывать ее 1 млн. раз, то распределение выпадения аверса и реверса составит почти 50/50;
- Но если из этого миллиона подбрасываний исследовать выборку, например, в 10-20 экспериментов, то распределение может оказаться любым – и 10/0, и 60/40, и 30/70.
То же и в инвестировании. Вспомните сущность закона больших чисел, он применим только при достаточном массиве статистики.
Если вернуться к ETF SPY и оценить его показатели за все время существования, то окажется, что рассчитывать можно в среднем на рост в 10,83% за год и 0,86% в месяц.
Этим результатам стоит доверять больше еще и потому, что за выбранный период SPY успел пережить 2 кризиса.
Ровно по такой же схеме закон больших чисел используется и в хедж-фондах, управляющих миллиардами долларов. Отличаются лишь инструменты анализа информации, сам принцип остается тем же.
Как использовать закон больших чисел в бизнесе
Закон больших чисел связан с обработкой статистических данных. Крупный бизнес не сможет работать и прогнозировать развитие без обработки статистики, поэтому этот закон в бизнесе применяется повсеместно.
Ниже – варианты применения закона в различных секторах:
- Прогнозирование объемов продаж продукта, например, смартфонов, автомобилей, холодильников. Помимо емкости рынка и степени его насыщения в качестве базы для прогноза берутся и результаты прошлых отчетных периодов;
- Страхование – помогает рассчитать страховую премию. На дистанции даже несчастные случаи подчиняются закону;
- Банковская деятельность – помогает рассчитать ставку по кредиту с тем, чтобы покрыть убытки, возникающие из-за клиентов, не выплачивающих займ, и остаться в плюсе;
- Даже при установке нормы «холодных звонков» используется закон больших чисел, в статистике он помогает рассчитать средний процент успешных звонков. На основе этого рассчитывается норма для каждого менеджера;
- Медицина – статистика позволяет выявить среднюю заболеваемость по месяцам и в зависимости от этого выработать нормы снабжения медучреждений.
Закон больших чисел в бизнесе применяется повсеместно. Прогнозирование результатов в будущем – не единственное его применение.
Так, закон больших чисел описывает фазы развития бизнеса. В частности, из него следует, что темпы роста бизнеса в процентном соотношении не могут сохраняться постоянными неограниченно долго.
Отсюда следует, что у молодого бизнеса более вероятен резкий рост, чем у компаний с многомиллиардными оборотами. Это следует взять на вооружение инвесторам.
По мере роста происходит насыщение рынка, рост в процентном соотношении падает (при этом в деньгах показатели растут). Чтобы не перейти к стагнации компания выводит новые продукты, выходит на новые рынки.
Применение закона больших чисел в банковской деятельности
Закон больших чисел просто необходим в банковской сфере.
Для обоснования частичного банковского резервирования. Для банка нет смысла постоянно располагать 100% депонированных средств. Если клиенты, например, совокупно внесли на счет $10 млрд., то банк часть этой суммы держит наготове на тот случай, если клиенты захотят обналичить средства, а часть пускает в оборот, зарабатывая фактически на пустом месте. Закон больших чисел позволяет рассчитать долю средств, которые можно пустить в оборот. Для нормальных условий рассчитывается процент клиентов, которые могут одновременно затребовать возврат денег, исходя из этого определяется норма резервирования.
В кредитовании. Например, чтобы обосновать проценты по кредиту. Использовав закон больших чисел банк может спрогнозировать какая доля заемщиков не выплатит займ. В том числе исходя из этого назначается процент за использование кредитных денег.
Для составления профиля благонадежного и неблагонадежного заемщика. На основании этого закона составляется профиль заемщика, который с наибольшей вероятностью вернет займ. Учитываются все составляющие – пол, сфера работы и должность, трудовой стаж, средний месячный доход, назначение займа, кредитная история, семейное положение.
Что касается того, на чем основывается закон больших чисел при его применении в банковской сфере, то это тот же массив статистики.
Эта закономерность используется и другими околофинансовыми учреждениями. Например, БКИ при расчете кредитного рейтинга и прогнозе о возможности займа в банке опираются на анализ статистики. Значит закон больших чисел задействован и здесь.
Как работает закон больших чисел в страховании
Сектор страхования предлагает всем желающим (не только физлицам) защитить себя от убытков при наступлении несчастного случая.
На первый взгляд форс-мажоры спрогнозировать невозможно, но при изучении статистики оказывается, что и они подчиняются математическим закономерностям.
Закон больших чисел в страховании используется для определения минимального страхового взноса, который бы позволил компании перекрыть убытки при наступлении страхового случая.
Пример
Компания страхует 100 000 автомобилей, усредненная стоимость каждого $50 000, столько страховщик обязан выплатить при наступлении страхового случая.
Закон больших чисел говорит о том, что в среднем за год вероятность попадания в ДТП/угона (условия наступления страхового случая оговариваются отдельно) составляет 1/200 или 0,5%. То есть ежегодно страховщику придется выплачивать компенсацию 0,5 х 100000/100 = 500 автовладельцам.
При выплате в $50 000 ежегодно компания будет выплачивать 500 х $50 000 = $25 млн.
Теперь рассчитаем стоимость страховки для страхователей. Чтобы страховщик вышел в ноль каждый из страхователей должен заплатить $25 000 000/100 000 = $250. Но так как страховщик хочет заработать, то в реальности стоимость страховки будет равна $250 + N, где N – вознаграждение компании, зависящее в первую очередь от конкуренции.
Страхование – бизнес, который стал возможным исключительно благодаря закону больших чисел. Без прогнозирования соотношения прибыли и убытка по страховым случаям страховщики не стали бы работать.
- Правило Парето в Примерах – Суть и Как применять в своей жизни
- Рынок медицинского каннабиса и Что о нём нужно знать
- Как создать свое государство – Пошаговая инструкция и реальные Примеры
- Бернард Мейдофф и его пирамида на 64 миллиарда долларов
- Как трейдер Ник Лисон обанкротил банк Barings и деньги Елизаветы II
Когда закон больших чисел не работает
Сложно найти сферу деятельности человека, где не применяется закон больших чисел. Но сама по себе эта закономерность не является 100%-ной гарантией того, что в будущем события будут развиваться в соответствии с расчетами.
Закон больших чисел может не работать при:
- Неумении вести бизнес. Например, неверно рассчитанная премия страховщика, игнорирование факторов риска может привести к банкротству страховой компании.
- Неверно выбранной базе данных для анализа. Расчеты дадут ложные результаты.
- Неверной оценке аудитории, на которую нацелен продукт. Представьте, что каждый житель китайского Уханя застраховал свое здоровье на случай эпидемии. В теории это выгодная сделка – вероятность эпидемии низка. Но если она все же случится, страховщик разорится. В этом примере нужно исходить из того, что каждый город = 1 потребитель.
- Закон больших чисел не гарантирует, что в каждом конкретном случае результат окажется равен матожиданию. Например, в 2008-2009 гг. инвестор столкнулся бы с проявлением нарушения этого закона.
Это не значит, что закон больших чисел нельзя использовать в бизнесе и инвестировании. Просто нужно заранее понимать, что он лишь прогнозирует вероятный результат в будущем на основе статистики.
Заключение
Если дать определение закону больших чисел простым языком, его можно назвать законом, описывающим наиболее вероятный сценарий развития событий в будущем, опираясь на массив исторических данных. При этом он не гарантирует на 100%, что результаты окажутся точно такими же.
Эту закономерность использует любой бизнес без исключения, в инвестировании ей также отведена существенная роль.
Вероятнее всего вы и сами неосознанно пользуетесь этой закономерностью при планировании своих инвестиций. Если же нет – самое время начать это делать.